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Abstract. Detailed knowledge of vegetation structure is required for accurate modelling 24	

of terrestrial ecosystems, but direct measurements of the three dimensional distribution 25	

of canopy elements, for instance from LiDAR, are not widely available. We investigate 26	

the potential for modelling vegetation roughness, a key parameter for climatological 27	

models, from directional scattering of visible and near-infrared (NIR) reflectance 28	

acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We 29	

compare our estimates across different tropical forest types to independent measures 30	

obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser 31	

Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our 32	

results showed linear correlation between MODIS-derived anisotropy to ALS-derived 33	

entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships 34	

were also obtained between MODIS-derived anisotropy and GLAS-derived entropy 35	

(0.52≤ r2≤ 0.61; p<0.05), with similar slopes and offsets found throughout the season, 36	

and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the 37	

MODIS-derived anisotropy and backscattering measurements (σ0) from 38	

SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that 39	

multi-angular MODIS observations are suitable to extrapolate measures of canopy 40	

entropy across different forest types, providing additional estimates of vegetation 41	

structure in the Amazon. 42	

 43	
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1. Introduction 47	

 48	

Terrestrial vegetation plays a significant role in the re-distribution of moisture and 49	

heat in the surface boundary layer, as well as in the energy balance of the planet 50	

(Bastiaanssen et al., 1998a). Land-atmosphere interactions are driven by the three-51	

dimensional structure of vegetated land cover, including surface roughness, leaf area 52	

and canopy volume (Vourlitis et al., 2015; Domingues et al., 2005). Canopy roughness, 53	

defined as vertical irregularities in the height of the canopy (Chapin et al., 2011), plays a 54	

key role in earth system modelling. For instance, evapotranspiration is controlled much 55	

more by canopy roughness (and therefore aerodynamic conductance) than by canopy 56	

leaf area or maximum stomatal conductance (Chapin et al., 2011).  57	

At stand level scales, significant advances have been made measuring canopy 58	

vegetation structure from Light Detection and Ranging (LiDAR). LiDAR allows direct 59	

measurements of the three-dimensional distribution of vertical vegetation elements from 60	

ground-based (Strahler et al., 2008), airborne (Wulder et al., 2012) and orbital platforms 61	

(Sun et al., 2008). To date, most vegetation related LiDAR applications rely on airborne 62	

platforms for data acquisition, with measurements acquired at altitudes between 500 and 63	

3000 m (Hilker et al., 2010). Due to cost and practical considerations, the availability of 64	

airborne LiDAR is currently limited to specific research sites and data are not available 65	

across the landscape.   66	

The Geoscience Laser Altimeter System (GLAS), onboard the Ice, Cloud, and land 67	

Elevation Satellite (ICESat), has provided certain capability to map vegetation 68	

characteristics across broader areas from space (Zwally et al., 2002). GLAS is a large-69	

footprint, waveform-recording LiDAR that measures the timing and power of the 1064 70	

nm laser energy returned from illuminated surfaces (Schutz et al., 2005). While not 71	

configured for vegetation characterization, the GLAS instrument allows quantification 72	
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of the vertical distribution of plant components relative to the ground over vegetated 73	

terrain (Harding, 2005; Yu et al., 2015, Morton et al., 2014). GLAS data has been 74	

successfully used to discriminate forest structure across various biome types (Boudreau 75	

et al., 2008; Gonçalves, 2014; Lefsky et al., 2005; Pang et al., 2008) and to estimate 76	

canopy light environments and forest productivity (Stark et al., 2014; Rap et al., 2015; 77	

Morton et al., 2016). While GLAS provides larger spatial coverage, its footprint is still 78	

spatially discrete and importantly a lack of repeated measurements prevents its use for 79	

estimation of climate related responses of vegetation.  80	

Perhaps complimentary to structural observations, optical remote sensing available 81	

from satellite data, provide global coverage at frequent time steps but can generally not 82	

deliver accurate information on the vertical organization of plant canopies. For instance, 83	

vegetation indices provide general information on canopy “greenness” but their ability 84	

to detect changes in high-biomass areas is limited due to a well-documented saturation 85	

effect (Carlson and Ripley, 1997). Although VIs have been employed as proxies for 86	

vegetation structure, including roughness lengths for turbulent transfer, field estimates 87	

of vegetation structure attributes are often only moderately correlated with VIs and their 88	

derivatives (Glenn et al., 2008).  89	

As an alternative to conventional, mono-angle observations, the combination of 90	

multiple view angles may provide new opportunities for modelling the structure of 91	

vegetated land surfaces (Breunig et al., 2015; Shaw & Pereira, 1982) from optical 92	

remote sensing. Changes in canopy structure including changes in tree crown size, 93	

shape, density and spatial distribution of leaves, affect the directional scattering of light 94	

(Chen et al., 2005). Multi-angle observations of this scattering may therefore allow us to 95	

describe the three-dimensional structure of vegetation (Chen and Leblanc, 1997; 96	

Strahler & Jupp, 1990). Multi-angular scattering of surface reflectance (anisotropy) has 97	
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been linked to optical properties and geometric structure of the target (Widlowski et al., 98	

2004; Widlowski et al., 2005), including canopy roughness (Strahler, 2009), leaf angle 99	

distribution (Roujean, 2002), leaf area index (LAI) (Walthall, 1997) and foliage 100	

clumping (Chen et al., 2005; Chopping et al., 2011). Such estimates may even be made 101	

in dense canopies (Moura et al., 2015), as observations acquired from multiple view 102	

angles decrease the dispersion and saturation effect in geometrically complex vegetation 103	

(Zhang et al., 2002). 104	

 105	
With the advent of multi-angular sensors such as the Multi-angle Imaging 106	

SpectroRadiometer (MISR) (Breunig et al., 2015) and POLDER (Roujean, 2002), the 107	

dependence of reflectance on observation angles has been documented (Barnsley et al., 108	

2004) and modelled (Roujean et al., 1992; Wanner et al., 1995). Recent progress using 109	

the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC) has 110	

allowed the acquisition of multi-angle reflectance across large areas and at high 111	

observation frequencies by combining satellite imagery obtained from NASA’s 112	

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua platforms 113	

during a few overpasses (Lyapustin et al., 2012a; Moura et al., 2015). Such observations 114	

could potentially allow periodic and spatially contiguous estimates of vegetation 115	

structure and its response to changes in climate variables. When correlated with more 116	

direct measurements of canopy structure by other instruments, such as LiDAR, this may 117	

then allow us to extrapolate canopy roughness and other structural estimates in space 118	

and time, thereby filling key data gaps for improving our understanding of ecosystem 119	

structure and functioning. Further validation may be provided by scatterometer 120	

observations over dense forests. For instance, the SeaWinds microwave radar, onboard 121	

NASA’s QuikSCAT satellite, was primarily designed to measure near-surface wind 122	

speed and direction over the oceans. However, due to its high sensitivity to water 123	
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content that drives canopy dielectric properties, it has been also used to study canopy 124	

structure (Frolking et al., 2011; Saatchi et al., 2013).  125	

In this study, we used estimates of canopy roughness obtained from 1) airborne 126	

laser scanning (ALS), 2) spaceborne LiDAR GLAS, and 3) the spaceborne SeaWinds 127	

scatterometer, to evaluate the potential of multi-angular MODIS observations for 128	

modelling vegetation roughness from directional scattering of visible and near-infrared 129	

(NIR) reflectance. We implemented a spatial scaling approach, from airborne to orbital 130	

levels of data acquisition, to model continuous coverage of roughness across tropical 131	

forests of the Xingu basin area in the Brazilian Amazon. Our objective was to test 132	

whether multi-angle MODIS reflectance can be used as a proxy for canopy roughness 133	

over Amazonian tropical forests, including different forest types such as Dense and 134	

Open ombrophilous Forests, and Semi-Deciduous Forest. 	135	

	136	

2. Methods 137	

2.1. Study area 138	

The study area is located in the southeast part of the Amazon, including the Xingu 139	

basin and adjacent areas (Figure 1). Figure 1 also shows the GLAS transects for the 140	

study area (Schutz et al., 2005) as well as the ALS and the field data plots. The study 141	

area presents a south-north gradient with respect to climate. Following the Kӧppen 142	

classification, the southern portion of the study area is dominated by tropical wet and 143	

dry climate (Aw), while the north portion is characterized by tropical monsoon climate 144	

(Am). Length and duration of the dry season, defined as months with rainfall less than 145	

100 mm or less than one third of precipitation range (Asner & Alencar, 2010; Myneni et 146	

al., 2007), also varies across the study area. In the southern parts, the dry season lasts 147	

about five months, from May to September (Moura et al., 2012). In the northern parts, a 148	
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drier climate prevails between July and November (Vieira et al., 2004). The area is 149	

characterized by three predominant forest types: Dense Ombrophilous Forest (Dse), 150	

Open Ombrophilous Forest (Asc) and Semi-Deciduous Forest (Fse) (IBGE, 2004). 151	

 152	

(Figure 1) 153	

 154	

2.2. Field inventory data 155	

Estimates of vegetation structure were derived for each of the three different forest 156	

types using available inventory plots across the region. For two vegetation types, Open 157	

Ombrophilous Forest (Asc) and Semi-decidiuous Forest (Fse), surveys were provided 158	

by the Sustainable Landscapes Brazil project in collaboration with the Brazilian 159	

Agricultural Research Corporation (EMBRAPA), the US Forest Service, the USAID, 160	

and the US Department of State (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). 161	

The Asc forest type was represented by 22 plots of 40 m x 40 m each. All the trees with 162	

a diameter at breast height (DBH) equal to or greater than 10 cm were measured within 163	

each plot. For Fse, 10 sample plots (20 m x 500 m) were used. The field data for the 164	

Dense Ombrophilous Forest (Dse) were obtained in 2012 and are described in Silva et 165	

al. (2015). The floristic and structural surveys included seven sample plots of 25 m x 166	

100 m over mature forests. Trees with DBH equal to or greater than 10 cm were 167	

measured within each plot. 168	

 169	

2.3. Airborne Laser Scanning (ALS) data 170	

ALS data were acquired by GEOID Ltd. using an Altm 3100/Optech instrument 171	

and provided by the Sustainable Landscapes Brazil project. The positional accuracy (1σ) 172	

of the LiDAR measurements was approximately 0.10 m horizontally and 0.12 m 173	
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vertically (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/). We focussed our 174	

analysis on undisturbed, non-degraded research plots. Structural information was 175	

obtained in the Tapajós National Forest, Pará State (September to November 2012), in 176	

São Félix do Xingu municipality, Pará state (August 2012) and in Canarana/Querência 177	

municipality, Mato Grosso State (August 2012), to represent Dse, Asc and Fse, 178	

respectively. Table 1 shows the specifications of LiDAR data for each site. 179	

(Table 1) 180	

ALS data were delivered as classified LAS-formatted point clouds, along with 1-m 181	

resolution bare earth digital terrain models (DTM). For comparison with GLAS, 182	

discrete-return data were aggregated produce pseudo-waveforms. Coops et al. (2007) 183	

demonstrated that canopy profiles, analogue to those derived from full waveform 184	

systems, can be derived from discrete return LiDAR when aggregating returns into three 185	

dimensional voxel spaces and comparing the amount of discrete returns contained in 186	

each voxel layer to the voxel layers below and above. In this study, waveforms were 187	

synthesized by sub-setting the LiDAR point cloud co-located with each field plot and 188	

counting the number of points observed in vertical bins of 50 cm and at a horizontal 189	

resolution of 100 x100m. 10 by 10 pixels of LiDAR metrics were then averaged to 190	

match the 1x1km MODIS pixel size. ALS based entropy was then computed to 191	

determine canopy structural diversity and approximate canopy roughness (Palace et al., 192	

2015; Stark et al., 2012). The method is described in detail in the next section (2.4) and 193	

is analogue to that applied from GLAS observations. In addition to ALS entropy, we 194	

also calculated canopy volume models (CVMs) to quantify the three-dimensional 195	

structure of the forest canopies based on the incident radiation levels	 and	196	

photosynthetic	 potential	 (Coops	 et	 al.,	 2007;	 Hilker	 et	 al.,	 2010).	 The	 method	 is	197	
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described	in	detail	in	(Lefsky	et	al.,	2005).	CVMs divide the canopy space into sunlit and 198	

shaded vegetation elements as well as gap spaces enclosed within.  199	

 200	

2.4. GLAS/ICESat data and structural metrics from vertical profiles 201	

GLAS profiles were obtained across the Xingu basin (Figure 1) between 2006 and 202	

2008 (laser operating periods 3E through 2D) (Gonçalves, 2014). Each GLAS footprint 203	

is elliptical in shape, spaced at approximately 170-m intervals along-track. GLAS 204	

LiDAR profiles characteristics varied between the campaigns across the study area. The 205	

near-infrared elliptical footprint and eccentricity varied between 51.2 (±1.7) to 58.7 206	

(±0.6), and 0.48 (±0.02) to 0.59 (±0.01), respectively. The horizontal and vertical 207	

geolocation accuracy varied between 0.00 (±3.41) to 1.72 (±7.36), and 0.00 (±2.38) to 208	

1.2 (±5.14), depending on the campaign and respective data product.  209	

Because GLAS observations are able to penetrate optically thin clouds (Schulz et 210	

al., 2005), processing of the GLAS profiles included additional cloud screening to 211	

improve the data quality. The technique is described in detail in Smith et al. (2005). 212	

Briefly, the approach takes advantage of the fact that returns unaffected by saturation or 213	

forward scattering resemble narrow Gaussian pulses that are similar to the transmitted 214	

pulse (Smith et al., 2005). To process GLAS waveforms, we used parameters reported 215	

in the GLA01, GLA05, and GLA14 data products following methods described by 216	

(Gonçalves, 2014). First, the waveforms were filtered by convolution with a discrete 217	

Gaussian kernel with the same standard deviation as the transmitted laser pulse. This 218	

procedure reduced the background noise, while preserving an adequate level of detail 219	

for characterization of the canopy (Sun et al., 2008). Second, GLAS waveforms used in 220	

this study were calibrated and digitized into 1000 discrete bins at a time resolution of 1 221	

ns (~15 cm). The locations of the highest (signal start) and lowest (signal end) detected 222	
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surfaces within the 150-m waveform were determined, respectively, as the first and last 223	

elevations at which the amplitude exceeded a threshold level, for a minimum of n 224	

consecutive bins. The peak of the ground return was determined as the lowest peaks in 225	

the smoothed waveforms with at least the same width as the transmitted laser pulse, 226	

after taking into account the mean noise level. In order to minimize the effect of 227	

different output energy levels of the 2E and 3E Laser flight campaigns, all profiles were 228	

then normalized to unity by dividing by the maximum amplitude. This correction 229	

approach assumes that differences in measurement campaigns affect the overall amount 230	

of energy but do not significantly change the waveforms (i.e. the vertical scale of energy 231	

output) of our entropy calculation (Gonçalves, 2014).  232	

We utilized GLAS estimates of entropy (Sz), a measure of canopy structural 233	

diversity sensitive to crown depth and leaf area (Palace et al., 2015; Stark et al., 2012), 234	

as a proxy of canopy roughness. Sz was calculated using Equations 1 and 2 (Harding & 235	

Carabajal, 2005, Nelson et al., 2009, Treuhaft et al., 2009, Gonçalves, 2014): 236	

 237	

𝑆" = − 𝑝(𝑤()	ln 𝑝(𝑤()
-.

(/0

,			𝑤𝑖𝑡ℎ 238	

           (1) 239	

𝑝 𝑤( =
𝑤( 𝑧
𝑤( 𝑧 	𝑑𝑧

8099
9

										 240	

           (2) 241	

where nb is the number of vertical bins from the ground peak to the signal start defined 242	

as the vertical distance between the ground peak and the signal start; w(z) is the laser 243	

power received from the 1m bin centered at height z; H100 is the maximum canopy 244	
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height, defined as the vertical distance between the ground peak and the signal start 245	

(Gonçalves, 2014).  246	

 247	

2.5. SeaWinds/QuikSCAT data 248	

Estimates of canopy structure were independently also obtained from SeaWinds 249	

Scatterometer data, provided by NASA’s Scatterometer Climate Record Pathfinder 250	

project. The SeaWinds Scatterometer operates at microwave frequency of 13.4 GHz 251	

(Ku-band) with mean incidence angle of 54º for V-polarization and 46º for H-252	

polarization. The sensitivity of radar data to variations in vegetation canopy structure 253	

can be explained by the dependence of radar backscatter to surface dielectric properties, 254	

which are strongly dependent on the liquid water content of the canopy constituents 255	

(Frolking et al., 2006). Given that the SeaWinds instrument operates at a higher 256	

frequency and higher incidence angle than other similar sensors, it has lower penetration 257	

into forest canopy, and therefore almost no interference from soil moisture variations in 258	

densely vegetated forested areas (Saatchi et al., 2013). 259	

The backscatter product (σ0) used in this study combines ascending (morning) and 260	

descending (evening) orbital passes, and is based on SeaWinds "egg" images (Frolking 261	

et al., 2006).	The nominal image pixel resolution for egg images is 4.45 km/pixel. Only 262	

backscatter data for horizontal (H) polarization were used, as previous assessments had 263	

indicated that results using vertical (V) polarization show no significant differences 264	

(Saatchi et al., 2013). We used data obtained from January 2001 to November 2009, 265	

when the sensor stopped collecting data due to failure in the scanning capability. To 266	

match the spatial resolution of the SeaWinds instrument, we averaged the corresponding 267	

anisotropy observations from the MODIS instrument to match the 268	

SeaWinds/QuikSCAT pixels.  269	
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2.6. Determination of surface anisotropy from multi-angle MODIS data 270	

MODIS observations are acquired at different solar and view zenith angles, 271	

depending on the orbital overpass and time of the year. Pixel-based algorithms often 272	

assume a Lambertian reflectance model, which reduces the anisotropy of the derived 273	

surface reflectance (Lyapustin, 1999; Wang et al., 2010), thus decreasing the ability to 274	

detect directional scattering (Hilker et al., 2009). In this study, we use the MAIAC 275	

algorithm because it preserves the multi-angle character of MODIS observations, 276	

providing a means to estimate the anisotropy of surface reflectance (Chen et al., 2005), 277	

a surrogate for structure of vegetation and shaded parts of the canopy (Myneni et al., 278	

2002; Chen et al., 2003; Gao et al., 2003). MAIAC is a cloud screening and atmospheric 279	

correction algorithm that uses an adaptive time series analysis and processing of groups 280	

of pixels to derive atmospheric aerosol concentration and surface reflectance. A detailed 281	

description of the technique can be found in Lyapustin et al. (2011) and Lyapustin et al. 282	

(2012). Previous results (Hilker et al., 2012, 2015) have shown that while the MAIAC 283	

cloud mask is less conservative, it is also more accurate, improving the number of 284	

observations and data quality in tropical environments.  285	

For retrieval of the surface bi-directional reflectance distribution function (BRDF), 286	

MAIAC accumulates data over 4-16 days (Lyapustin et al., 2011, 2012). Assuming that 287	

vegetation is relatively stable during this period, the surface directional scattering can be 288	

characterized using the Ross-Thick Li-Sparse (RTLS) bidirectional reflectance 289	

distribution function (BRDF) model (Roujean, et al., 1992). 290	

Using the RTLS model (Wanner et al., 1995), we characterized the BRDF of each 1 291	

km x 1 km grid cell of MODIS data. Based on the RTLS BRDF model, we derived 292	

MODIS backscatter (Solar Zenith Angle (SZA) = 45°, View Zenith Angle (VZA) = 35°, 293	

Relative Azimuth Angle (RAA) = 180°) and forward scatter (SZA = 45°, VZA = 35°, 294	
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RAA = 0°) observations (4-16 days of observations) for a fixed view and sun angle. The 295	

advantage of using the RTLS model rather than reflectance directly is to keep constant 296	

sun-observer geometry and extrapolate measurements to the principal plane. In addition, 297	

the modelled reflectance can be based on all multi-angle MODIS data, which should 298	

yield a more representative characterization of the reflectance properties. We selected a 299	

VZA of 35° rather than the hotspot location at VZA = 45° in order to keep the modelled 300	

reflectance closer to the actual range of angles observed by MODIS, thereby 301	

minimizing potential errors resulting from extrapolation of the BRDF.  302	

We used estimates of anisotropy (defined as the difference between BRDF 303	

modelled backscattering (SZA = 45°, VZA = 35°, RAA = 180°) and BRDF modelled 304	

forward scattering (SZA = 45°, VZA = 35°, RAA = 0°) based on the Enhanced 305	

Vegetation Index (EVI) to describe roughness of the surface for different vegetation 306	

types across the study area (Moura et al., 2015). The objective of using EVI rather than 307	

surface reflectance of a given band was to minimize the effect of non-photosynthetically 308	

active elements (i.e. soil fraction component) while optimizing the sensitivity to green 309	

canopy structure (Moura et al., 2015). 310	

MODIS-derived anisotropy values were then regressed against ALS-derived 311	

entropy, GLAS-derived entropy and SeaWinds/QuikSCAT backscatter (σ0
, Frolking et 312	

al., 2006), which were estimated on a per-pixel-basis to generate time series profiles of 313	

entropy for each forest type in the study area.  314	

 315	

3. Results 316	

The Xingu basin contains a number of different forest types. However, vegetation is 317	

dominated by Asc and Dse forest types in the north, and by Fse vegetation in the south, 318	
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as illustrated in Figure 2. The GLAS tracks are also shown in this figure to highlight the 319	

sampling density of the spaceborne LiDAR over each forest type. An illustration of the 320	

mean canopy height (MCH) derived from ALS for three sample areas of 1 ha each is 321	

provided in Figure 2. Airborne ALS measurements showed, on average, the largest tree 322	

heights in the Dse class with values up to 40 meters tall (red color in the inset of Figure 323	

2). Asc and Fse vegetation types reached up to 30 m and 25 meters in height, 324	

respectively. Field measurements showed that mean canopy heights from forest 325	

inventories were 19.8 m, 17.4 m and 17.0 m for Dse, Asc and Fse, respectively (Table 326	

2). When compared to Asc and Fse, Dse presented larger metrics of diversity (i.e. 327	

species richness (S) and Shannon index (H’)) and structure (mean height (HT), mean 328	

diameter at breast height (DBH), basal area (BA), aboveground biomass (AGB) and leaf 329	

area index (LAI)) (Table 2). 330	

 331	

(Figure 2) 332	

 333	

 (Table 2) 334	

Differences in canopy structure were also evident from the analysis of canopy 335	

volume models (CVMs) (Figure 3). While gap spaces were relatively small in all three 336	

vegetation types, Asc showed a notably higher proportion of sunlit vegetation that 337	

reached down deep into the canopy, suggesting a higher spatial variability of tree 338	

heights compared to the other two vegetation types. Similarly, gaps in the upper canopy 339	

were mostly present in Asc, as expected for open forest types. Fse showed gaps 340	

predominantly in lower height levels, and a higher overall proportion of shaded crown. 341	

Full canopy closure (100% of the canopy space filled by either sunlit or shaded canopy 342	
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elements or fully enclosed gap space) was reached at about 15 m height for both Asc 343	

and Dse, and at about 20 m height for Fse.  344	

(Figure 3) 345	

  346	

Differences in vegetation structure derived from ALS data were confirmed also 347	

with spaceborne GLAS observations. GLAS-derived seasonal profiles of entropy for 348	

2006 showed spatial averages that differed over time between the three vegetation types 349	

(Figure 4). Even though there were differences in the years of data acquisition (2006 for 350	

GLAS and 2012 for ALS), the shaded area in Figure 4 was plotted to provide a seasonal 351	

reference between the airborne and spaceborne data. GLAS derived seasonal profiles 352	

varied between different forest types. The lowest values of entropy were consistently 353	

found for Fse. In contrast, Asc for Dse showed GLAS entropy higher throughout the 354	

measurement period. All forest types showed strong seasonality with increasing entropy 355	

from February to September, and decreasing values thereafter with predominance of 356	

higher entropy during the dry season.  357	

 358	

(Figure 4) 359	

Examples of MODIS anisotropy during March, June and October of 2006 360	

illustrated seasonal and spatial changes in multi-angle reflectance across the Xingu 361	

basin (Figure 5). The MODIS derived anisotropy was consistently higher in the northern 362	

part of the study area, and its spatial distribution coincided well with the forest types 363	

indicated in Figure 2. A clear limit between forested (high MODIS anisotropy) and non-364	

forested (low anisotropy) areas was evident in the southern part of the map. 365	

Furthermore, higher values of anisotropy were found for the Asc and Dse vegetation 366	

compared to Fse. While MAIAC observations allowed a notable number of 367	
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measurements of anisotropy between June (Figure 5b) and October (Figure 5c), some 368	

data gaps were observed in March (Figure 5a) due to cloud cover in the rainy season.   369	

(Figure 5) 370	

  MODIS-derived anisotropy was linearly correlated to ALS-derived entropy 371	

(Figure 6). The coefficient of determination (r2) of the relationship between all 828 372	

MODIS pixels that coincided with existing ALS observations was 0.54 with an RMSE 373	

of 0.11 units of entropy. Much of the scattering presented in Figure 3 was limited to 374	

lower values of entropy, while residuals were notably smaller for the higher entropy 375	

range.  376	

(Figure 6) 377	

Significant relationships were also found between MODIS anisotropy and 378	

GLAS measured entropy using all observations that contained five or more GLAS shots 379	

within the 1 km x 1 km MODIS pixels (Figure 7). In order to examine seasonal 380	

variability in the relationship, we performed the regressions separately for March 381	

(Figure 7a), June (Figure 7b) and October (Figure 7c) of 2006. The r2 varied between 382	

0.52 for March and 0.61 for June (p<0.05) with similar slopes and offsets found 383	

throughout the observation period. RMSE varied between 0.26 and 0.30 units of entropy. 384	

The highest noise levels were observed in March, which is corresponding also to the 385	

larger amount of data gaps during the rainy season (Figure 5). The availability of GLAS 386	

data was somewhat limited during June, but the relationships were still highly 387	

significant and consistent with those observed during other months of the year. A 388	

comparison between conventional VI estimates using directionally normalized EVI 389	

from MAIAC and LiDAR derived Entropy is shown in the appendix (Figure A1). 390	

(Figure 7) 391	



17	
	

A strong relationship between the MODIS-derived anisotropy and the 392	

backscattering measurements (σ0) from SeaWinds/QuikSCAT was also observed 393	

(Figure 8). The relationship was obtained for 10.000 randomly sampled MODIS pixels 394	

and corresponding SeaWinds/QuikSCAT (σ0) observations across the Xingu basin for 395	

all available QuikSCAT data between 2001 and 2009. Note, however, that when using 396	

radar observations, the relationship to MODIS-derived anisotropy was non-linear 397	

(r2=0.59, RMSE=0.11). 398	

(Figure 8) 399	

Time series profiles of MODIS-derived entropy estimated from the regression 400	

model of Figure 7c and of MODIS-derived QuikSCAT-σ0 estimated from model of 401	

Figure 8 were plotted as spatial averages for Dse, Asc and Fse (Figure 9). All three 402	

forest types displayed notable seasonal cycles. The Ombrophilous Forests (Dse and Asc) 403	

consistently showed high values of entropy with less seasonal variation. In contrast, the 404	

seasonal cycles were much more pronouced in the Fse, as expected for semi-decidous 405	

vegetation. Both models (GLAS-derived entropy and QScat-derived σ0) yielded very 406	

similar seasonal patterns, in terms of temporal variation as well as in terms of 407	

differences between vegetation types. The results presented in Figure 9 were consistent 408	

also with those shown in Figure 5. A small negative trend in both entropy and σ0 was 409	

observed from 2000 until 2009 and a positive trend in all three vegetation types was 410	

found from 2010 onwards. This trend was especially pronounced for the canopy entropy 411	

based on GLAS observations.    412	

(Figure 9) 413	

4. Discussion 414	

This study investigated the potential of multi-angle reflectance obtained from 415	

MODIS to derive estimates of vegetated surface roughness as an important structural 416	
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parameter of land atmosphere interactions. Aside from field observations, airborne laser 417	

scanning is arguably the most comprehensive tool to describe the three-dimensional 418	

vegetation structure at the stand level to date (Coops et al., 2007; Lim et al., 2003; 419	

Wulder et al., 2012). Recent initiatives such as the “Sustainable Landscapes 420	

Brazil“ project (http://mapas.cnpm.embrapa.br/paisagenssustentaveis/) seek to improve 421	

upon existing deficiencies of data availability and provide new opportunities to generate 422	

structural metrics across discrete locations within the Amazon basin. 423	

LiDAR based characterization of vegetation structure (Figures 2, 3, and Table 1) 424	

exposed a large heterogeneity across the Xingu basin, both spatially and seasonally. 425	

ALS-observed structural differences between vegetation types were detectable also 426	

from space using photon counting LiDAR (GLAS/IceSat) and microwave 427	

backscattering (SeaWinds/QuikSCAT) (Figures 4 and 9b). This is an important finding, 428	

as it opens an opportunity for scaling spatially discrete observations of canopy structure 429	

across larger areas from space (Popescu et al., 2011). 430	

Spatial and temporal heterogeneity in Amazonian vegetation (Silva et al., 2013; 431	

Townsend et al., 2008) is not easily obtained from conventional vegetation indices 432	

(Hilker et al., 2015), as VIs cannot adequately capture differences in canopy structure 433	

among different vegetation types (Glenn et al., 2008; Lagouarde et al., 2002). Findings 434	

presented in this study (Figures 6 to 9) suggest that such canopy structural variation may 435	

be better determined from multi-angular reflectance. Our estimates of anisotropy 436	

showed considerable improvements over estimates using mono-observation vegetation 437	

indices (Figure A1). The ability of multi-angle observation to derive vegetation 438	

structural attributes is well supported by previous results (Chen & Leblanc, 1997; Chen, 439	

2003; Gao, 2003; Strahler & Jupp, 1990; Yu et al., 2015; Zhang et al., 2002). While 440	

these authors have focused on smaller study areas using specialized sensors, our 441	



19	
	

findings confirm such multi-angle potential to be acquired from the MODIS instrument 442	

and across the Amazon basin (Moura et al., 2015). Our previous work also confirmed 443	

the consistency of monthly anisotropy measurements and its statistical significance for 444	

estimating seasonal changes in vegetation structure across the Amazon (Moura et al., 445	

2015). This is an important advancement, as it allows structural estimates over large 446	

areas and at high temporal frequencies from space, complementing the data analysis of 447	

orbital LiDAR data.  448	

Anisotropy derived from multiple overpasses of MODIS imagery may therefore 449	

provide new insights into structural variability of Amazon forests as it increases the 450	

sensitivity to changes in vegetation structure across dense vegetation types. As 451	

demonstrated in previous work (Moura et al., 2015), seasonal changes in observed 452	

anisotropy cannot be explained by bi-directional effects, as all observations have been 453	

normalized to a fixed forward and backscatter geometry (Lyapustin et al., 2012b). In 454	

addition, Moura et al. (2015) demonstrated that standard deviations between observed 455	

and modelled MAIAC reflectance were about 10% of the observed variation in 456	

anisotropy, thus confirming the ability of our approach to detect seasonal and inter-457	

annual changes. Differences between forward and backscatter observations as utilized in 458	

this paper are largely driven by the different directional scattering behaviour of red and 459	

NIR reflectance (Moura et al., 2015, Hilker et al., 2015). The modelled near hotspot and 460	

near darkspot locations were designed to maximize the range of resulting anisotropy, 461	

thereby seeking to increase the sensitivity with respect to changes in vegetation 462	

structure.  463	

While the range of view angles acquired by MODIS is relatively small, as the 464	

instrument was not specifically designed for multi-angle acquisitions, MODIS-derived 465	

anisotropy still provided an effective means to characterize vegetation structure across 466	
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large areas from space. Within the Amazon basin (or tropics in general), this is partially 467	

facilitated by the fact that MODIS view geometry comes very close to the principal 468	

plane twice a year. As a result, our BRDF model is representative of the angles used in 469	

this study. Consequently, modelled anisotropy is close to its maximum range of possible 470	

values. The contrary occurs in mid-latitudes where observations are further from the 471	

principal plane. In these cases, other geometric configurations might be preferable.  472	

Modelling MODIS anisotropy using the RTLS BRDF model further allowed us to 473	

derive anisotropy independent of the sun-observer geometry (Roujean et al., 1992). As a 474	

limitation to this approach, changes in sun-sensor configuration over the year do not 475	

always allow modelling of forward and backscattering observations within the sampling 476	

range of the MODIS instruments. Therefore, higher uncertainties may be observed 477	

during some times of the year than during others. 478	

The strong, positive correlation found between GLAS-measured entropy and 479	

MODIS anisotropy (Figure 6) may be explained by geometric scattering of individual 480	

tree crowns (Chopping et al., 2011; Li, X., Strahler, 1986). For instance, a large 481	

variability in canopy heights (high canopy roughness) will increase the geometric 482	

scattering component, especially of NIR reflectance. Other structural changes may, 483	

however, also influence seasonal patterns of anisotropy. In addition to canopy 484	

roughness, anisotropy is also affected by leaf angle distribution (Roujean, 2002) and 485	

foliage clumping (Chen et al., 2005) among other variables related to the floristic 486	

variability, which tends to be high in tropical forests. The interaction between these 487	

variables and multi-angle scattering is not straightforward, requiring further 488	

investigation, especially in the components of scattering determined in the RTLS model.  489	

For example, increases in leaf area may increase the volumetric scattering component 490	

(Ross, 1981; Roujean, et al., 1992) of multi-angle reflectance, but at the same time 491	



21	
	

decrease the surface roughness, at least within a certain range of values. Therefore, the 492	

results presented in here should be understood as a first demonstration of the technique.  493	

Due to the complexities described as well as other limitations in terms of footprint 494	

size, and range of angular sampling, MODIS-derived estimates of canopy structure 495	

should not be understood as a replacement for direct 3D measures of vegetation, but 496	

rather as a complimentary approach for scaling such observations in space and time. 497	

The consistency in the modelled relationship obtained from GLAS LiDAR and 498	

SeaWinds/QuikSCAT backscattering is encouraging in this respect, as it suggests that 499	

such scaling approaches may be built on opportunistically sampled observations across 500	

platforms. For instance, MODIS data can help interpret estimates of canopy roughness 501	

in between GLAS footprints, as well as fill missing observations in time, enabling more 502	

comprehensive seasonal and spatial analysis. Upcoming new LiDAR instruments, such 503	

as the Global Ecosystem Dynamics (GEDI) mission (Dubayah et al., 2014; Stysley et al., 504	

2015), will allow further improvements in the measures of canopy structure as well as 505	

biomass.  506	

 507	

5. Conclusions 508	

Our analysis has demonstrated that multi-angular MODIS observations are suitable 509	

to determine canopy entropy at different scales of LiDAR measurements across the 510	

study area in the Amazon. The sparseness of existing, highly detailed LiDAR 511	

observations currently imposes severe restriction on accuracy of modeled carbon and 512	

water fluxes, particularly in remote regions such as the Amazon basin. Complementary 513	

measures of vegetation structure from optical satellites are therefore highly desirable to 514	

extrapolate spatially or temporally sparse estimates of canopy structure across the 515	
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landscape. Such approaches will be crucial for improving our understanding of climate 516	

tolerance and responses to Amazonian forests to extreme events. 517	
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 772	

Table 1. Characteristics of the airborne laser scanning (ALS) data acquired over Dense 773	

Ombrophilous (Dse), Open Ombrophilous (Asc) and Semi-Deciduous (Fse) Forests in 774	

the Brazilian Amazon. 775	

 776	

Forest 
Type 

Total area 
(ha) 

Max 
flight 

altitude 
(m) 

Flightline 
overlap 

(%) 

Average 
return 

density 
(ppm2) 

Average 
first 

return 
density 
(ppm2) 

Field of 
view (°) 

Dse 1049 850 65 25.1 15.28 11.1 
Asc 1004 850 65 24.1 15.20 11.0 
Fse 1005 850 65 13.7 7.05 11.0 

 777	

 778	

Table 2. Floristic and structural metrics calculated from field inventory data for Dense 779	

Ombrophilous Forest (Dse), Open Ombrophilous Forest (Asc) and Semi-Deciduous 780	

Forest (Fse). The mean leaf area index (LAI), determined from Airborne Laser 781	

Scanning (ALS), is indicated in the last column of the table.  782	

Forest 
Type 

Plots S H’ Ht(m) BA(m
2

m
-2

) LAI (ALS) 

Dse 7 181 4.61 18.1 30.63 6.05 
Asc 22 1595 3.67 17.4 11.36 4.32 
Fse 10 802 2.20 17.0 12.83 5.33 
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 784	

 785	

 786	

 787	
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LIST OF FIGURES 788	

 789	

Figure 1. Location of the study within the Amazon basin. The inset shows the 790	

Geoscience Laser Altimeter System (GLAS) coverage (strings), airborne laser scanning 791	

(ALS) data acquisition and the available field inventory plots across the Xingu basin. 792	

Figure 2. Vegetation cover map adapted from IBGE (2004) in the left, and diagrams of 793	

height estimates from ALS LiDAR data in the right, to illustrate structural variation 794	

between the three predominant forest types in the study area (Dse, Asc and Fse). Each 795	

Airborne Laser Scanning (ALS) plot represents an area of 100 m x100 m to describe the 796	

heights in the three different forests.  797	

Figure 3. Canopy volume models (CVMs) based on the Airborne Laser Scanning (ALS) 798	

for (a) Dense ombrophilous forest (Dse); (b) Open ombrophilous Forest (Asc); and (c) 799	

Semi-deciduous forest (Fse).   800	

Figure 4. Seasonal profiles of GLAS-derived entropy for the three different forest types 801	

of the study area. GLAS data were obtained only for the months indicated in the x-axis. 802	

Just for reference, the shaded area represents the quarter when the Airborne Laser 803	

Scanning (ALS) data were collected in 2012.  804	

Figure 5. MODIS-derived anisotropy images during (a) March, (b) June and (c) October 805	

of 2006 to illustrate seasonal and spatial changes in multi-angle reflectance across the 806	

Xingu basin. 807	

Figure 6. Relationship between MODIS-derived anisotropy and ALS-derived entropy 808	

(or canopy roughness). 809	



30	
	

Figure 7. Relationship between MODIS-derived anisotropy and GLAS-derived entropy 810	

using observations for (a) March, (b) June and (c) October of 2006. 811	

Figure 8. Relationship between MODIS-derived anisotropy and backscattering (σ0) 812	

measurements from SeaWinds/QSCAT over Amazonian tropical forests considering the 813	

period 2001 to 2009.   814	

Figure 9. Time series profiles of MODIS-derived (a) GLAS entropy estimated using the 815	

regression model of Figure 7c, and (b) MODIS-derived SeaWinds/QuikSCAT 816	

backscattering (σ0) from the model of Figure 8. Results are shown as spatial average for 817	

Dense (Dse) and Open (Asc) Ombrophilous Forests and the Semi-Deciduous Forest 818	

(Fse) between 2000 and 2012 for the Xingu basin.  819	

 820	

Figure A1. Comparison between MODIS-MAIAC EVI (normalized for directional 821	

effects) and estimates of canopy entropy derived from ALS (a), GLAS (b) and 822	

QuikSCAT (c). The vegetation index was significantly less suited to describe canopy 823	

structural parameters than Anisotropy.  824	
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